
Unleashing Db2 SQL Workload Performance Using In-Memory
Techniques: Exploring SQL Query Result Set Caching

By Craig S. Mullins

In the realm of database management, performance optimization is a perpetual pursuit. As data volumes
surge and query complexities escalate, innovative techniques are required to ensure optimal performance. The
use of memory to cache data is a long-standing technique used by database management systems in the form
of buffer pools. Another emerging technique for improving query performance is SQL query result set caching.

As the diagram below illustrates, Db2 SQL query execution traverses a long code path and consumes a
good deal of CPU. Using memory to improve query performance is a crucial strategy for improving database
performance and reducing resource consumption. In this article, we delve into in-memory data caching
techniques, highlighting their benefits, differences, and real-world impact on system efficiency.

1

Db2 Buffer Pool Processing:
Leveraging Memory for Performance Gains

Db2 Buffer pools are dedicated areas of memory
that are used to store data pages or blocks that
are frequently accessed by queries. All requested
data is accessed via the buffer pools. The first
time that data is requested, it is retrieved from disk
and placed in the buffer pool before being passed
along to the requesting user or application. Every
time a query requires data, the DBMS checks if the
required data pages are already in the buffer pool.
If so, it retrieves the data from those pages, instead
of requesting an I/O. This results in a generally
favorable overall impact on performance.

Db2 buffer pool processing focuses on optimizing
data access by caching frequently accessed data
pages in memory buffers. When a query requires
data that is already in the buffer pool, the database
retrieves it from memory instead of fetching it from
disk.

Key benefits of buffer pool processing include:

•	 Faster Data Access: By keeping frequently
accessed data in memory, buffer pool
processing minimizes disk I/O operations,
resulting in faster data retrieval and query
execution times.

•	 Reduced Latency: Memory-resident data
reduces latency compared to disk-based
access, leading to improved application
responsiveness and user satisfaction.

•	 Resource Optimization: Buffer pool processing
optimizes resource utilization by prioritizing
memory for frequently accessed data, thereby
enhancing overall system performance and
efficiency.

•	 Concurrency Control: Buffer pools facilitate
efficient concurrency control mechanisms,
ensuring data consistency and integrity in multi-
user database environments.

It is for these reasons that buffer pool processing is
a crucial feature of the Db2 DBMS.

2

SQL Query Result Set Caching:
Enhancing Speed and Efficiency

Another approach to caching data in memory is
to cache the results of SQL queries. This is known
as “SQL query result set caching” and it involves
storing the results of frequently issued queries in
memory. For targeted queries, the first time the
query runs, the SQL query result set is saved to
an in-memory cache. When an identical query is
subsequently issued, the system retrieves the result
set from the cache, pre-empting re-execution of the
query by the database.

This approach offers several advantages:

•	 Reduced Database Load: By retrieving data
from cache rather than re-executing queries,
SQL query result set caching reduces the
workload on the database, minimizing resource
utilization and improving overall system
performance.

•	 Faster Response Times: Cached result sets
lead to faster responses to application queries,
enhancing application performance and user
experience. This is particularly beneficial for

read-heavy workloads where data retrieval
speed is paramount.

•	 Improved Scalability: Caching transforms
a portion of the normal database workload
to simple result set retrieval. This allows
databases to handle higher query volumes
without experiencing performance degradation,
making it an effective strategy for scaling
systems as workload volumes grow.

•	 Cost Efficiency: Reduced database load
and improved performance translate to cost
savings. Organizations can achieve optimal
performance without incurring additional
hardware and software costs.

SQL query result set caching operates at a higher
abstraction level than buffer pool data page
caching. This approach caches SQL query result
sets exactly as Db2 would deliver them to the
application. For SQL queries whose result sets
reside in cache, the SQL statement need not be
executed at all.

3

Contrasting Approaches:
SQL Query Result Set Caching vs. Buffer Pool Processing

While both SQL query result set caching and
buffer pool processing aim to improve database
performance, they operate at different levels within
the data access hierarchy. SQL query result set
caching focuses on caching query results, reducing
database load, and enhancing query response
times. On the other hand, buffer pool processing
optimizes data access by caching data pages in
memory, minimizing disk I/O and latency.

Consider some of the advantages of caching SQL
query results versus caching data pages in buffer
pools:

•	 Bypass SQL Operations: By caching the
exact data required to satisfy the query, an
SQL result set caching approach need not
execute a repetitive query again until or unless
the underlying data changes. By avoiding

Db2 execution of the SQL altogether, a lot of
overhead is saved. With buffer pools this is
never an option as pages of data are cached,
not actual SQL results. With buffer pools,
repetitive queries are executed repetitively.

•	 Buffer Pools are Volatile: The capacity of the
buffer pools will never approach the capacity
of data on disk. Data pages are moved in
and out of buffers all the time based on on-
going activity. When data is required, the page
must be moved into the buffer pool. It is quite
possible that a page cached in the buffer pool is
used only once before it is moved out to make
room for other data. This is not the case with
result set caching where you have the option to
cache only frequently requested result sets, and
where the storage required to cache frequently
requested result sets is much less than the
space required to cache all requested data
pages.

4

•	 Minimize Db2 data and I/O processing: A lot of
processing is required to satisfy an SQL query
and return results to the requester. As illustrated
in the diagram on the first page, this includes
I/O processing (itself an expensive operation),
GETPAGE processing, processing and managing
data throughout the internals of the DBMS
(such as the Buffer Manager, Data Manager,
and Relational Data System for Db2 for z/OS),
and more. For a result set returned from cache,
SQL query result set caching eliminates all this
processing.

•	 No Locking Required: Sometimes database
locking can be a significant impediment
to database performance and application
processing. When applications use cached
query result sets, no locking is required at all for
those queries as the DBMS does not execute
them. The data is simply returned from cache.

In practical terms, SQL query result set caching is
beneficial for read-heavy workloads with recurring
queries, where caching entire result sets can
significantly boost performance. Buffer pool
processing, on the other hand, is essential for
optimizing data access at the page level, ensuring
efficient use of memory resources and minimizing
disk-related bottlenecks.

In the Db2 world, an optimal approach can be
implemented by combining an SQL query result
cache with standard Db2 buffer pool processing.
Combining buffer pool processing and SQL query
result set caching can work to use the memory at
your disposal in the most optimal manner for each
type of database request.

5

Use Cases for SQL Query Result Set Caching:
SQL query result set caching is beneficial for
scenarios where the same queries are executed
frequently, and where the underlying data changes
infrequently, allowing for efficient reuse of cached
results. For example, batch programs and online
transaction workloads having repetitive queries that
access lookup, code, reference, and other relatively

stable data types will see significantly enhanced
performance.
Consider a query that runs many millions of times
a day repeating frequently across a range of host
variables. Now imagine all that CPU intensive Db2
processing and I/O wiped away by storing and
accessing the result sets from cache.

6

Real-World Impact and Best Practices
The adoption of SQL query result set caching has
delivered tangible performance improvements for
organizations across industries.

Best practices include:

•	 Balancing Caching Strategies: Strike a balance
between SQL query result set caching and
buffer pool processing based on workload
characteristics, data access patterns, and
performance objectives.

•	 Identifying Performance Hotspots: Analyze
query patterns and data access patterns to
identify queries that would benefit most from
result set caching.

•	 Optimizing Cache Management: Implement
effective cache management policies to ensure
optimal use of memory resources and cache
strategies.

•	 Monitoring and Fine-Tuning: Although SQL
query result set caching should not require
in-depth monitoring; it is wise to periodically
monitor your applications for cache utilization
and determine if all of the queries being cached
are still optimal and/or viable. For example,
did a business process change result in too-
frequent update of the table data underlying
cached result sets? Is the query no longer
running as frequently as it did in the past? Did
application changes introduce new queries that
will benefit from result set caching?

You should look for a Db2 SQL query result set
caching solution that offers a way to survey your
existing environment for queries that will benefit
from caching. Furthermore, you should look for
a solution that is non-invasive. You do not want
to have to change your database environment,
database structures, application code, or JCL to
implement an SQL query result set cache.

An effective solution should self-manage and
dynamically build the result set cache without the
need to define and maintain data synchronization
processes.

Query result set caching solutions should come
with a built-in mechanism for identifying underlying
changes. When a change is about to be made
to a table underlying cached result sets, those
cached result sets should immediately be marked
as invalidated and dependent queries passed to
Db2 for regular processing. Be sure that there
are no back doors where data changes could
go undetected. For example, the tool should be
sensitive to the execution of database utilities –
such as Load and Recover - that change data in
tables.

One such tool that implements SQL result set
caching for Db2 for z/OS is QuickSelect for Db2
from Log-On Software.

https://log-on.com/quickselect-for-db2-performance/
https://log-on.com/quickselect-for-db2-performance/

Summary

About Craig Mullins

In conclusion, SQL query result set caching and buffer pool processing are powerful techniques for enhancing
database performance, reducing latency, and optimizing resource utilization. By understanding the nuances
of these approaches and implementing best practices, organizations can unlock the full potential of their
databases, delivering superior performance, scalability, and user experience.

Craig S. Mullins is the president and principal consultant
of Mullins Consulting, Inc., an independent consulting and
strategy firm specializing in database management and
mainframe systems. Craig has been involved with Db2 for
z/OS since Version 1 and has extensive experience as an
application developer, DBA, and instructor. He has been
recognized as an IBM Gold Consultant and IBM Champion
for Data and AI by IBM, and as an Influential Mainframer
by Planet Mainframe. Craig is the author of several books,
including the industry-leading “DB2 Developer’s Guide” on
Db2 for z/OS and “Database Administration: The Complete
Guide to DBA Practices and Procedures,” the only book
on heterogeneous database administration. Craig can be
contacted at http://www.MullinsConsulting.com

Additional information on QuickSelect for Db2 can be found
at https://log-on.com/quickselect-for-db2-performance/ or
by emailing to ask@log-on.com

7

https://www.mullinsconsulting.com/
https://log-on.com/quickselect-for-db2-performance/

