10110 100

##eie Craig S. Mullins

Return to Home Page

Vol. 10, No. 2 (August 2003)

IMTERMNATIOMAL
DE2 TUSERS GROUP

From IDUG Solutions Journal...

 The Buffer Pool

Choose the Proper Data Type
By Craig S. Mullins

The basic theme of this column has been to
review DB2 issues that are confusing or
misunderstood. This time, I'll be tackling a
topic that might surprise you - using the
proper data types.

Indeed, data type and length are the most
fundamental integrity constraints applied to
data in a database. Simply by specifying the
data type for each column when a table is
created, DB2 automatically ensures that only
the correct type of data is stored in that
column. Processes that attempt to insert or
update the data to a non-conforming value will

http://www.craigsmullins.com/

be rejected. Furthermore, a maximum length
is assigned to the column to prohibit larger
values from being stored in the table.

The DBA must choose the data type and length of
each column wisely. It is almost always best to choose
the data type that most closely matches the domain of
correct values for the column. In general, adhere to the
following rules:

e |f the data is numeric, favor SMALLINT,
INTEGER, or DECIMAL data types. FLOAT is
also an option for very large numbers only.

e |f the data is character, use CHAR or
VARCHAR data types.

e |f the data is date and time, use DATE,
TIME, and TIMESTAMP data types.

e |f the data is multimedia, use GRAPHIC,
VARGRAPHIC, BLOB, CLOB, or DBCLOB

data types.

Now, | don’t know exactly why using improper
data types is such a widespread practice, but |
can guarantee you that it is. | am constantly
being bombarded with questions that bounce
around this topic. A lot of folks have trouble

when trying access data that is not stored
using a standard format or data type. Maybe
they just cannot figure out how to get that
function to work right. Or perhaps they're just
having a performance problem. Sometimes
the answer to all of these questions can be -
use the proper data type!

DATE and TIME

Why anyone would ever store a date or time in
a DB2 table any other format than DATE, TIME,
or TIMESTAMP is beyond me. But, oh, they do
it all the time. And it causes all sorts of
headaches. The benefits of using the proper
DB2 data type are many, including:

e Ensuring data integrity because DB2 will
ensure that only valid date and time values
are stored

e The ability to use date and time arithmetic

e Avast array of built-in functions to operate
on and transform date and time values

e Multiple formatting choices

DB2 enables you to add and subtract DATE,
TIME, and TIMESTAMP columns. In addition,
you can add date and time durations to or
subtract them from these columns.
Understanding these capabilities and features
can dramatically decrease your programming
time and effort. Keep the following rules in
mind:

When you issue date arithmetic statements
using durations, do not try to establish a
common conversion factor between durations
of different types. For example, the following
two date arithmetic statements are not
equivalent:

2003/04/03 - 1 MONTH
2003/04/03 - 30 DAYS

April has 30 days, so the normal response
would be to subtract 30 days to subtract one
month. The result of the first statement is
2003/03/03, but the result of the second
statement is 2003/03/04. In general, use like
durations (for example, use months or use

days, but not both) when you issue date
arithmetic.

If one operand is a date, the other operand
must be a date or a date duration. If one
operand is a time, the other operand must be
a time or a time duration. You cannot mix
durations and data types with date and time
arithmetic.

If one operand is a timestamp, the other
operand can be a time, a date, a time duration,
or a date duration. The second operand
cannot be a timestamp. You can mix date and
time durations with timestamp data types.

Now, what exactly is in that field returned as
the result of a date or time calculation? Simply
stated, it is a duration. There are three types of
durations: date durations, time durations, and
labeled durations.

Date durations are expressed as a
DECIMAL(8,0) number. To be properly
interpreted, the number must have the format

yyyymmdd, where yyyy represents the number
of years, mm the number of months, and dd
the number of days. The result of subtracting
one DATE value from another is a date
duration.

Time durations are expressed as a
DECIMAL(6,0) number. To be properly
interpreted, the number must have the format
hhmmess, where hh represents the number of
hours, mm the number of minutes, and ss the
number of seconds. The result of subtracting
one TIME value from another is a time
duration.

Labeled durations represent a specific unit of
time as expressed by a number followed by
one of the seven duration keywords: YEARS,
MONTHS, DAYS, HOURS, MINUTES, SECONDS,
or MICROSECONDS. A labeled duration can
only be used as an operand of an arithmetic
operator, and the other operand must have a
data type of DATE, TIME, or TIMESTAMP. For
example:

CURRENT DATE + 3 YEARS + 6 MONTHS

This will add three and a half years to the
current date. Keep in mind, though, that you
cannot use a host variable for the operand of a
labeled duration - it must be a numeric
constant.

Additionally, you have multiple built-in
functions at your disposal for manipulating
date and time data, but only when the data is
stored as DATE, TIME, and TIMESTAMP data
types. The time-related DB2 functions include
CHAR, DATE, DAY, DAYOFMONTH,
DAYOFWEEK, DAYOFYEAR, DAYS, HOUR,
JULIAN_DAY, MICROSECOND,
MIDNIGHT_SECONDS, MINUTE, MONTH,
QUARTER, SECOND, TIME, TIMESTAMP, WEEK,
WEEK_ISO, and YEAR.

The way a DATE is internally stored is not really
that important. However, the way dates are
displayed is very important to most
applications, and DB2 offers a good range of
formats. Consult Table 1 for a list of the date
formats that are supported by DB2. You may
also have an installation-defined date format

that would be named LOCAL. For LOCAL, the
date exit for ASCII data is DSNXVDTA, the date
exit for EBCDIC is DSNXVDTX, and the date exit
for Unicode is DSNXVDTU.

Table 1. DB2 DATE Formats

Name Layout Example
1ISO yyyy-mm-dd 2002-10-22
USA mm/dd/yyyy 10/22/2002
EUR dd.mm.yyyy 22.10.2002
JIS yyyy-mm-dd 2002-10-22
LOCAL Locally defined | N/A

layout

The only situation when DATE, TIME, or
TIMESTAMP may not be appropriate for
chronological data that immediately jumps to
mind is when you only need to store a subset
of a date or time. For example, if all that is
required is month, then a DB2 DATE or
TIMESTAMP would require you to store
information that is not needed and might be
confusing. So you might choose to create an

INTEGER column for month with a check
constraint limiting the values to 1 through 12.
Other than that type of situation, DATE, TIME,
or TIMESTAMP is the way to go.

What problems can happen if you choose a
numeric or CHAR data type instead? Well, you
will not be able to perform date arithmetic or
take advantage of DB2's formatting options. Of
course, you could convert the data to a DB2
DATE or TIME first, but that can cause
performance problems. CPU usage is required
to convert data to and from different formats.
For example, what if you choose to store dates
in @ CHAR column in the following format:
yyyymmdd (with no dashes or slashes). To use
a DB2 format or function you will have to
convert the data to a recognizable DB2 format.
To do this, you could use the SUBSTR function
to break the character column apart into the
separate components and concatenate them
together into the USA format as follows:

SUBSTR (column, 5,2) || "/™ || SUBSTR(column,7,2) || "/" ||
SUBSTR (column, 1, 4)

You can then use the DATE function so that the
result of this can be used in date arithmetic
with other dates or date durations. Of course,
with all the substringing it may not perform
extremely well.

So, use DATE, TIME, and TIMESTAMP for your
chronological DB2 data.

NUMERIC versus CHARACTER

But chronological data is not the only area
where data type troubles abound. Sometimes
we can mess up quite nicely just choosing
between numeric and character data types.
For example, consider the following scenario.
A four-byte code is required to identify an
entity; all of the codes are numeric and will
stay that way. But, for reporting purposes,
users wish the codes to print out with leading
zeroes. Should the column be defined as
CHAR(4) or SMALLINT?

Without proper edit checks, inserts and
updates could place invalid alphabetic

characters into the product code. This can be a
very valid concern if ad hoc data modifications
are permitted. This is rare in production
databases, but data problems can still occur if
the proper edit checks are not coded into
every program that can modify the data. If
proper edit checks are coded and will never be
bypassed, this removes the data integrity
question. Check constraints are not a very
viable solution in this case, either. Consider the
following constraint

COL CHAR(4) CONSTRAINT NUMBER CHECK
(COL >= '0000' AND
COL <= '9999"),

This constraint would allow the following value
oascr. It iS greater than oo and less than roooo-,
so it fits within the constraint.

Choosing the wrong data type can impact
performance, too. Consider the impact on
filter factor calculations for numeric versus
character data. What are the possible number
of values that a CHAR(4) column and a
SMALLINT column can assume? Even if
programmatic edit checks are coded for each,

DB2 is not aware of these and assumes that all
combinations of characters are permitted. DB2
uses base 37 to determine access paths for
character columns, under the assumption that
26 alphabetic letters, 10 numeric digits, and a
space are most commonly used. This adds up
to 37 possible characters. For a four-byte

character column there are 374 or 1,874,161
possible values.

A SMALLINT column can range from -32,768 to
32,767 producing 65,536 possible small integer
values. The drawback here is that negative or 5
digit product codes could be entered.

However, if we adhere to our proper edit check
assumption, the data integrity problems will be
avoided here, as well.

DB2 will use the HIGH2KEY and LOW2KEY
values to calculate filter factors. For character
columns, the range between HIGH2KEY and
LOW?2KEY is larger than numeric columns
because there are more total values. The filter
factor will be larger for the numeric data type
than for the character data type, which may

influence DB2 to choose a different access
path.

But what about those leading zeroes? If the
data is stored in a CHAR(4) column we can just
input the data with leading zeroes and then
they will always be there. Well, this “problem”
can be solved using other methods. When
using QMF, you can ensure that leading zeroes
are shown by using the "J" edit code. Other
reporting tools have similar capabilities.
Internally developed reporting programs can
be coded to display leading zeroes easily
enough by moving the host variables to
appropriate display fields.

In general, once again, all signs point to
assigning the column the data type that best
matches the values in its domain.

Ssummary

There is a lot more that can be said about
choosing appropriate data types, but | have
run out of space for this issue. The bottom line

on data types is to use them to protect the
integrity of your DB2 data and to simplify your
job by taking advantage of DB2's built-in
capabilities. By choosing that data type that
most closely matches your data you will be

doing yourself, your systems, and your users a
big favor.

From IDUG Solutions Journal, August 2003.

© 2003 Craig S. Mullins, All rights reserved.
Home.

http://www.idug.org/
http://www.craigsmullins.com/

