
 Craig S. Mullins
               
Database
Performance Management

Return to Home Page

June 2005

 
  Some SQL Tricks for the DB2 Developer

By Craig S. Mullins

It is always a good idea to keep your bag of SQL tricks loaded
with techniques to help solve some of the more common or
troubling application development problems. I do not know if
the following SQL techniques match up to your most pressing
development issues, but I’m sure they might come in handy in
certain situations.

Sorting Days of the Week

Here is a sorting trick that you can use when you are dealing
with temporal data. Assume that you have a table containing
transactions, or some other type of interesting facts. The table
has a CHAR(3) column containing the name of the day on

http://www.craigsmullins.com/


which the transaction happened; let’s call this column
DAY_NAME. Now, let’s further assume that we want to write
queries against this table that orders the results by
DAY_NAME. We’d want Sunday first, followed by Monday,
Tuesday, Wednesday, and so on. How can this be done?

Well, if we write the first query that comes to mind the results
will obviously be sorted improperly:

SELECT   DAY_NAME, COL1, COL2 . . .
FROM     TXN_TABLE
ORDER BY DAY_NAME;

The results from this query would be ordered alphabetically;
in other words

FRI
MON
SAT
SUN
THU
TUE
WED

One solution would be to design the table with an additional
numeric or alphabetic column that would sort properly. By this
I mean that we could add a DAY_NUM column that would be
1 for Sunday, 2 for Monday, and so on. But this requires a



database design change, and it becomes possible for the
DAY_NUM and DAY_NAME to get out of sync.

A better solution uses just SQL and requires no change to the
database structures. All you need is an understanding of SQL
and SQL functions – in this case, the LOCATE function.  Here
is the SQL:

SELECT   DAY_NAME, COL1, COL2 . . .
FROM     TXN_TABLE
ORDER BY
LOCATE(DAY_NAME,'SUNMONTUEWEDTHUFRISAT');

The trick here is to understand how the LOCATE function
works: it returns the starting position of the first occurrence of
one string within another string. So, in our example, LOCATE
finds the position of the DAY_NAME value within the string
'SUNMONTUEWEDTHUFRISAT', and returns the integer
value of that position. If DAY_NAME is WED, the LOCATION
function in the above SQL statement returns 10. (Note: Some
other database systems have a similar function called
INSTR.) Sunday would return 1, Monday 4, Tuesday 7,
Wednesday 10, Thursday 13, Friday 16, and Saturday 19.
This means that our results would be in the order we require.

Of course, you can go one step further if you’d like. Some
queries may need to actually return the day of week. You can
use the same technique with a twist to return the day of week
value given only the day’s name. To turn this into the



appropriate day of the week number (that is, a value of 1
through 7), we divide by three, use the INT function on the
result to return only the integer portion of the result, and then
add one:

INT(LOCATE('SUNMONTUEWEDTHUFRISAT',DAY_NAME)/3)
+ 1;

Let’s use our previous example of Wednesday again. The
LOCATION function returns the value 10. So, INT(10/3) = 3
and add 1 to get 4. And sure enough, Wednesday is the
fourth day of the week.

Removing Superfluous Spaces

We all can relate to dealing with systems that have data
integrity problems. But some data integrity problems can be
cleaned up using a touch of SQL. Consider the common data
entry problem of extraneous spaces (or blanks) inserted into
a name field. Not only is it annoying, sometimes it can cause
the system to ignore relationships between data elements
because the names do not match. For example, “Craig 
Mullins” is not equivalent to “Craig Mullins”; the first one has
two spaces between the first and last name whereas the
second one only has one.

You can write an SQL UPDATE statement to clean up the
problem, if you know how to use the REPLACE function.
REPLACE does what it sounds like it would do: it reviews a



source string and replaces all occurrences of a one string with
another. For example, to replace all occurrences of Z with A
in the string BZNZNZ you would code:

REPLACE(‘BZNZNZ’,’Z’,’A’)

And the result would be BANANA. So, let’s create a SQL
statement using REPLACE to get rid of any unwanted spaces
in the NAME column of our EMPLOYEE table:

UPDATE EMPLOYEE
   SET NAME = REPLACE(
               REPLACE(
                REPLACE(NAME, SPACE(1), '<>')
                '><', SPACE(0))
               '<>', SPACE(1));

Wait-a-minute, you might be saying. What are all of those left
and right carats and why do I need them? Well, let’s go from
the inside out. The inside REPLACE statement takes the
NAME column and converts every occurrence of a single
space into a left/right carat. The next REPLACE (working
outward), takes the string we just created, and removes every
occurrence of a right/left carat combination by replacing it with
a zero length string. The final REPLACE function takes that
string and replaces any left/right carats with a single space.
The reversal of the carats is the key to removing all spaces
except one – remember, we want to retain a single space



anywhere there was a single space as well as anywhere that
had multiple spaces. Try it, it works.

Of course, you can use any two characters you like, but the
left and right carat characters work well visually. Be sure that
you do not choose to use characters that occur naturally in
the string that you are acting upon.

Finally, the SPACE function was used for clarity. You could
have used strings encased in single quotes, but the SPACE
function is easier to read. It simply returns a string of spaces
the length of which is specified as the integer argument. So,
SPACE(12) would return a string of twelve spaces.

Aggregating Aggregates

The final SQL trick we’ll uncover in this article allows us to
perform aggregations of aggregates. For example, you might
want to compute the average of a sum. This comes up
frequently in applications that are built around sales amounts.
Let’s assume that we have a table containing sales
information. Each sales amount has additional information
indicating the salesman, region, district, product, date, etc.

A common requirement is to produce a report of the average
sales by region for a particular period, say the first quarter of
2005. But the data in the table is at a detail level, meaning we
have a row for each specific sale.



A novice SQL coder might try to write a query with a function
inside a function, like AVG(SUM(SALE_AMT)). Of course, this
is invalid SQL syntax. DB2 will not permit the nesting of
aggregate functions. But we can use nested table
expressions and our knowledge of SQL functions to build the
correct query.

Let’s start by creating a query to return the sum of all sales by
region for the time period in question. That query should look
something like this:

SELECT REGION, SUM(SALE_AMT)
FROM   SALES
WHERE SALE_DATE BETWEEN DATE(‘2005-01-01’)
                AND     DATE(‘2005-03-31’)
GROUP BY REGION;

Now that we have the total sales by region for the period in
question, we can embed this query into a nested table
expression in another query like so:

SELECT NTE.REGION, AVE(NTE.TOTAL_SALES)
FROM (SELECT REGION, SUM(SALE_AMT)
      FROM   SALES
      WHERE SALE_DATE BETWEEN DATE(‘2005-01-
01’)
                      AND     DATE(‘2005-03-
31’)



      GROUP BY REGION) AS NTE
GROUP BY NTE.REGION;

Summary

In this article we examined several techniques to solve
application problems using only SQL. With a sound
understanding of SQL, and particularly SQL functions and
expressions, you can often times find novel ways of solving
thorny problems using nothing but SQL.

 

From DB2 Update, June 2005.

 


© 2005 Craig S. Mullins, All rights reserved.

Home.   




   

http://www.craigsmullins.com/

