The procedural DBA

Until recently, the function of a DBMS was narrowly defined. Its only
purpose was to store, manage, and access data. Although these core
capabilities are still required by modern DBMS products, additional
procedural functionality is no longer just a nice-to-have feature, but
a necessity. The ability to define business rules to the DBMS instead
of in a separate application program builds upon the concept of
sharing data. However, instead of merely sharing data, modern
DBMS:s will enable applications to share both common data elements
and code elements.

All the most popular RDBMS products are adding complex features
and components to facilitate procedural logic. Stored procedures,
user-defined functions, triggers, and complex encapsulated objects
require procedural logic — sometimes very complex procedural logic.
Storing logic in the database requires that organizations expand the
way they have traditionally handled database management and
administration. Typically, as new features are added, administering,
designing, and managing these features is assigned to the database
administrator (DBA) by default. This approach is not always the best
one.

THE ROLE OF THE DBA

The DBA's role has expanded over the years. In the pre-relational
days, database design and data access were complex. Programmers
were required to code program logic explicitly to navigate the database
and access data. The pre-relational DBA was assigned only the task of
designing the database structure. This process usually consisted of
both logical and physical database design, although it was not always
recognized as such at the time.

Once the database was planned, designed, and generated, and the
DBA created back-up and recovery jobs, little more than space
management and reorganizations were required. This is not to belittle
these tasks. The pre-relational DBMS products required a complex
series of utility programs to be run in order to perform back-up,

16 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

recovery, and reorganization. This process consumed a large amount
of time, energy, and effort. As RDBMS products gained popularity,
the role of the DBA expanded. Of course, DBAs still designed
databases, but increasingly these were generated from logical data
models created by data modelling specialists. Relational design still
required physical implementation decisions — such as indexing,
denormalization, and partitioning schemes — but, instead of merely
concerning themselves with physical implementation and
administration issues, DBAs found that they were becoming more
intimately involved with procedural data access.

RDBMSs require additional involvement during the design of data
access routines. No longer are programmers navigating the data—now
the RDBMS is. Optimizer technology embedded in the RDBMS is
responsible for creating the access paths to the data. To make matters
more complex, Oracle offers multiple optimization choices — cost-
based and rule-based. The DBA must review the optimization methods
and choices. Program and SQL design reviews are now a vital
component of the DBA’s job. Furthermore, the DBA must perform
additional monitoring and tuning responsibilities. Back-up, recovery,
and reorganization are just a start. Inaddition, DBAs now use ‘explain
plan’, performance monitors, and SQL analysis tools to administer
RDBMS applications proactively.

Often, DBAs aren’tadequately trained in these areas. Itisa completely
different skill to program than it is to create well-designed relational
databases. DBAs, more often than not, found that they had to be able
to understand application logic and programming techniques to
succeed.

COMBINING PROCESS AND DATA

RDBMS products are maturing and gaining more functionality. The
clear trend is that more and more procedural logic is being stored in
the database. Oracle supports database-administered procedural logic
in the form of stored procedures, triggers, constraints, User-Defined
Functions (UDFs) and objects, and data cartridges.

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 17

Stored procedures are procedural logic that is maintained, administered,
and executed through the database. The primary reason for using
stored procedures is to move application code off the client workstation
and onto the database server. This set-up typically results in less
overhead because one client can invoke a stored procedure and cause
the procedure to invoke multiple SQL statements. This approach is
preferable to the client executing multiple SQL statements directly
because it minimizes network traffic, which can enhance overall
application performance. A stored procedure is not physically
associated with any other object in the database. It can access and/or
modify data in one or more tables. Basically, you can think of stored
procedures as ‘programs’ that ‘live’ in the database.

Triggers are event-driven specialized procedures that are stored in,
and executed by, the RDBMS. Each trigger is attached to a single,
specified table. Think of triggers as an advanced form of rule or
constraint written using procedural logic. A trigger cannot be directly
called or executed; it is automatically executed (or ‘fired’) by the
database as the result of an action — usually a data modification to the
associated table. Once you create a trigger, it is non-bypassable. In
other words, it is always executed when its ‘firing’ event occurs.

A constraint is a database-enforced limitation or requirement, coded
into the definition of a table, which is non-bypassable. There are three
types of constraints — unique constraints, referential constraints, and
check constraints. A unique constraint forbids duplicate values to be
stored in a column or group of columns. Referential constraints define
primary and foreign keys within two tables that define the permitted
specific data values that can be stored in those tables. Although they
are both forms of constraints, they are also predefined to the DBMS
and cannot be changed. Both unique and referential constraints do,
however, require quite a bit of administration and management. The
third type of constraint, the check constraint, is used to define the exact
requirements for values that can be stored in a specific column. You
can define a wide range of rules using check constraints because they
are defined using the same search conditions that are used in SQL
WHERE clauses. For example, the following constraint ensures that
only red, white, and blue are acceptable colours:

18 © 1998. Xephon UK telephone 01635 33848, fax 01635 38345, USA telephone (940) 455 7050, fax (940) 455 2492,

CHECK (Color IN (°RED", °'WHITE', 'BLUE'))

A UDF provides a result based upon a set of input values. UDFs are
programs that can be executed in place of standard, built-in SQL
scalar or column functions. A scalar function transforms data for each
row of a result set; a column function evaluates each value for a
particular column in each row of the results set, and returns a single
value. Once written and defined to the RDBMS, a UDF becomes
available just like any other built-in function.

Oracle8 uses object types to model real-world entities. An object type
is a user-defined composite data type that meets application
requirements. An object is an instance of a given object type. Object
types build upon Oracle’sexisting datatypes (NUMBER, VARCHAR?2,
DATE, etc) to offer developers a broader range of data modelling
capabilities. Each object type has attributes that describe the entity
and the methods that act upon it. Object types do not physically store
data; they can be thought of as templates that characterize the data
being stored. The data is physically stored in the table that references
the object type.

Object types stored in column positions are called column objects.
Object types that are contained in other object types are called nested
objects. Allobject types have at least one method, called the constructor
method. The constructor method is an implicitly-defined method that
makes an object of the given type. The constructor method is given the
same name as the object type and isexecuted automatically when SQL
statements, or PL/SQL code, create the type values. Oracle8 also
allows you to create user-defined methods. A user defined method has
complete access to attributes of its associated object and information
about its type. Methods are invoked by referring to an object of its
associated type.

Oracle8 also supports varrays. Arrays are ordered sets of elements and
have been used by application developers since the first program was
written! Arrays use indexes of numbers to point to specific elements.
All of the elements in an array must be of the same type. The array’s
size depends on the number of elements it contains. Oracle8 builds
upon this concept through varrays. Varrays and nested tables are
referred to as collections in Oracle8. Varrays do not allocate storage

© 1998, Reproduction prohibited, Please inform Xephon of any infringement. 19

space and are variable in size. Varrays are useful for relatively small
sets of objects; nested tables should be used for sets containing a large
number of elements. A varray can be used as a data type of a relational
table, an object-type attribute, or a PL/SQL variable, parameter, or
function return type.

Finally, Oracle supports cartridges within its NCA (Network
Computing Architecture). A cartridge is amanageable object package.
Cartridges provide an Interface Definition Language (IDL) - a
language-neutral interface that allows the cartridge to identify itself to
other objects in a distributed system. The language-neutral interface
allows developers to code cartridges in languages such as Java, Visual
BASIC, C/C++, PL/SQL, and other languages. The Inter-Cartridge
Exchange will enable cartridges, distributed across a network and
plugged into different targets, to communicate with each other as well
as clients, servers, and services. Oracle provides the following
cartridges (at extra cost) for the Oracle8 server:

* VideoCartridge—delivers video and audio to business applications
across the intranet.

* Image Cartridge — stores and retrieves two-dimensional static
bitmapped images, including scanned documents.

* Time Series Cartridge — supports a variety of statistical and time-
conversion functions to provide temporal analysis.

* Spatial Cartridge —allows the seamless integration of geographic
data into business applications.

+ ConText Cartridge — offers advanced linguistic capabilities for
text searches and for generating themes and theme-summaries
from all digital documents.

Indeed, Oracle8 provides a rich environment for integrating business
rules and procedural logic into the database. This support impacts the
entire application and database life-cycle from planning through
development, implementation, testing, administration, management,
and support.

20 © 1998. Xcphon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492,

SERVER CODE OBJECTS

Stored procedures, triggers, constraints, and UDFs are just like other
database objects such as tables, views, and indexes, in that the DBMS
controls them. These types of object are often collectively referred to
as Server Code Objects (SCOs) because they are actually program
code that is stored and maintained by a database server as a database
object. Depending upon the particular RDBMS implementation,
these objects may or may not ‘physically’ reside inthe RDBMS. They
are, however, always registered to, as well as maintained in conjunction
with, the RDBMS.

Why are server code objects so popular? The predominant reason for
using SCOs is to try and promote code re-usability. Rather than
replicating code on multiple servers or within multiple application
programs, SCOs enable code to reside in a single place — the database
server. SCOs can be automatically executed, based upon context and
activity, or can be called from multiple client programs as required —
which is preferable to cannibalizing sections of program code for each
new application that must be developed. SCOs enable logic to be
invoked from multiple processes instead of being re-coded into each
new process every time the code is required.

An additional benefit of SCOs is increased consistency. If every user
and every database activity (with the same requirements) is assured of
using the SCO instead of multiple, replicated code segments, then the
organization can be assured that everyone is running the same,
consistent code. If individual users used their own individual and
separate code, there would be no assurance that the same business
logic was being used by everyone. In fact, it is almost a certainty that
inconsistencies would occur.

Additionally, SCOs are useful for reducing the overall code
maintenance effort. Because SCOs exist in asingle place (the database),
you can make changes without having to propagate the change to
multiple workstations. Another common reason to use SCOs is to
enhance performance. A stored procedure, for example, may resultin
enhanced performance because it is typically stored in parsed (or
compiled) format, thereby eliminating parser overhead. Additionally,
in a client/server environment, stored procedures will reduce network

© 1998. Reproduction prohibited. Please inform Xephon of any infringement. 21

traffic because multiple SQL statements can be invoked with a single
execution of a procedure instead of sending multiple requests across
the communications lines.

Finally, SCOs can be coded to support database integrity constraints,
implement security requirements, reduce code maintenance efforts,
and support remote data access. With all of these benefits it is certain
that SCOs will be utilized. But how does this impact administration?

ANEW TYPE OF DBA

Although the functionality that is provided by SCOs is useful and
desirable, DBAs are presented with a major dilemma. Now that
procedural logic is being stored in the database, DBAs must contend
with the issues of quality, maintainability, and availability. How and
when will these objects be tested? The impact of a failure is not
relegated to a single application but can potentially impact the entire
organization — causing these objects to become more visible and
critical. Who is responsible if they fail? The answer must be a DBA.

With the advent of SCOs, the role of the DBA is expanding to
encompass too many responsibilities for a single person to perform
the job capably. The solution is to split the DBA’s job into two separate
parts, based upon the database object to be supported — data objects
or server code objects.

Administering and managing data objects is more in line with the
traditional role of the DBA, and is well-defined. But DDL and
database utility experts cannot be expected to debug procedures and
functions written in C, COBOL, oreven procedural SQL. Furthermore,
even though many organizations rely upon DBAs to be the SQL
experts in the company, often they are not — at least not Data
Manipulation Language (DML) experts. Simply because DBAs know
the best way to create a physical database design and DDL, it does not
mean they will know the best way to access that data.

The role of administering the procedural logic in an RDBMS should
fall upon someone skilled in that discipline. We must define a new
type of DBA toaccommodate SCO and procedural logic administration.
This new role can be defined as a procedural DBA.

[}
[¥}

© 1998. Xephon UK telephone 01635 33848, fax 01635 38345. USA telephone (940) 455 7050, fax (940) 455 2492.

The procedural DBA should be responsible for those database
management activities that require procedural logic support and/or
coding. Of course, this job should include having the primary
responsibility for SCOs. Whether ornot SCOs are actually programmed
by the procedural DBA will differ from shop to shop. This decision
will depend on the size of the shop, the number of DBAs available, and
the scope of SCO implementation. At a minimum, procedural DBAs
should participate in and lead the review and administration of SCOs.
Additionally, procedural DBAs should be on call for SCO application
failures.

If a centralized procedural DBA is not available, consider what
happens when a shared stored procedure (for example) fails. A
demand deposit application is developed by a large commercial
organization that requires customer information. A stored procedure
(or UDF) is developed to return customer information on request. The
demand deposit application calls this code whenever it requires
customer information. The development is completed and the
application is migrated to production. A few months go by and another
application is being developed (say, a trust accounting system) that
requires customer information. The decision is made to use the stored
procedure that exists. The application is completed and turned over to
the production environment. A few weeks later, the trust application
bombs in the customer stored procedure. Who comes in to fix it? The
trust folks claim that it is not their code, they don’t understand it, and
are incapable of fixing it. The demand deposit folks claim that their
application is running fine so it’s not their problem. The answer is to
employ a procedural DBA to review, revise, monitor, fix, and perhaps
even code the common SCOs. In that case, the procedural DBA will
be ‘on call’ to correct the problem.

Other procedural administrative functions that should be allocated to
the procedural DBA include application code reviews, access path
review and analysis (from EXPLAIN PLAN), PL/SQL debugging,
complex SQL analysis, rewriting queries for optimal execution, and
complex object review and support. Off-loading these tasks to the
procedural DBA will enable the traditional, data-oriented DBAs to
concentrate on the actual physical design and implementation of

D 1998. Reproduction prohibited. Please inform Xephon of any infringement. 23

databases. This approach should result in much better designed
databases.

The procedural DBA should still report through the same management
unit as the traditional DB A —not through the application programming
staff. This set-up enables better skills sharing between the two distinct
DBA types. Of course, a greater synergy must exist between the
procedural DBA and the application programmer/analyst. In fact, the
procedural DBA should move up in the ranks from application
programming, building from the existing coding skill-base.

There are, however, potential problems that may be encountered
when implementing a procedural DBA role. Firstly, some DBAs will
not be content in only one role. Often DBAs are curious and want to
know everything about everything. But many currently do not know
(or care to know) how to program. Those who know SQL do not want
to write C or Visual BASIC (and many of them do not want to know
the intricacies of procedural SQL dialects like PL/SQL). Additionally,
quite a few DBA staff already have performance analyst/DBAs, who
are more programming literate, and design DBAs, who are more
database object literate. Implementing a procedural DBA position in
this type of organization should be easier than in most. For those few
shops that have DBAs who do indeed wish to ‘know it all’, cross-
training DBAs with primary and secondary roles should eliminate the
resistance.

Another potential problem might occur if implementing a procedural
DBA requires additional staff. Many organizations believe that they
cannot afford the DBAs they have now — so how can they afford more
DBAs? In fact, most organizations can’t afford not to have procedural
DBAs. More and more of the organization’s business rules are being
implemented in SCOs and complex objects, which means the company
cannot afford the downtime and inefficiency when performance
problems or failures cannot be resolved in a timely manner.

A third problem could arise if your company believes that your DBAs
do all this already. Why should they split the tasks into distinct roles
when the support already exists? This point could be true. If so, it is
wise to delineate the role of each DBA and have them specialize.

24 © 1998. Xephon UK telcphone 01635 33848, fax 01635 38345, USA telephone (940) 455 7050, fax (940) 455 2492.

Specialization brings efficiency and rapid response. However, this
assertion could also be false. Investigate this argument and find out
just what the DBA staff is doing. They might not have the time to
review every piece of code that goes into production. This neglect can
be devastating for UDFs, triggers, and stored procedures, since they
are intrinsically tied to data integrity and performance. Many DBA
staff are overworked and might not have time to rewrite poorly coded
SQL and PL/SQL. This can be a difficult problem for procedural
database objects because they don’t affect just one program — they are
reused and potentially can impact every program that accesses the
database. It can also be problematic for strategic application programs
that have not been thoroughly benchmarked and performance tested.

Finally, there is the heterogeneous argument. It goes something like:
‘We use multiple DBMS products, each with a different technique for
coding triggers, stored procedures, and functions. No one person can
know all of them’. This argument is true, but it actually reinforces the
requirement for a procedural DBA. The more diverse and
heterogeneous your environment is, the more you need to specialize.
It makes sense not only to specialize by task or role (process objects
versus traditional database objects), but also to specialize by DBMS
product. Just because someone is an Oracle PL/SQL wizard, it doesn’t
mean they will be equally adept at user-defined functions coded in C
for DB2 or Sybase Transact-SQL stored procedures.

SYNOPSIS

As procedural logic becomes more and more pervasive in your Oracle
applications, database administration becomes more complex. The
duties performed by a DBA are expanding to the point where no single
professional can reasonably be expected to be an expert in all facets
of the job. It is high time that the job be explicitly defined into
manageable components. We need procedural DBAs.

Craig S Mullins
Vice President Operations
Platinum Technology (USA) © Craig S Mullins 1998

© 1998. Reproduction prohibitcd. Please inform Xcphon of any infringement. 25

