DATABASE MANAGEMENT
"

~ Effective DB2 Object
Monitoring Using The DB2

tion DB2-based systems, it is neces-

sary to monitor periodically the DB2
objects comprising those systems. Moni-
toring is an essential component of post-
implementation duties because the pro-
duction environment is dynamic. Fluctua-
tions in business activity, errors in logical
and/or physical design or lack of com-
munication can all cause a system to per-
form inadequately. An effective strategy
for monitoring DB2 objects in the pro-
duction environment will catch and fore-
stall potential problems before they ad-
versely impact performance. The job of
monitoring DB2 objects usually is per-
formed by a database administrator, per-
formance analyst or system administrator.

An effective monitoring strategy will
include scheduled performance monitor
jobs, regular monitor runs from all on-
line environments where DB2 transac-
tions execute (that is, CICS, IMS/DC,
TSO) and regularly-scheduled reports
from the DB2 catalog. This article will
detail a strategy for accomplishing the lat-
ter objective.

By querying the DB2 catalog on a con-
sistent basis, many possible hazards can
be analyzed and acted on in a proactive
mode. This article describes QMF queries
which access the DB2 catalog. An anal-
ysis accompanies each query highlighting
some of the potential problems that can
be trapped by reviewing the output from
each query.

To implement this strategy, certain basic
assumptions have been made. It is as-
sumed that all application plans are bound
with the EXPLAIN(YES) option and that
each application has its own PLAN_TA-

In order to maintain efficient produc-

12

Catalog

By Craig S. Mullins

BLE for the storage of the EXPLAIN re-
sults. It is also assumed that scheduled
production STOSPACE and RUNSTATS
jobs are executed and that plans are re-
bound whenever RUNSTATS has been
executed. This is necessary to maintain
current statistical information about all
DB2 objects for an application. It is also
assumed that RUNSTATS has been per-
formed on the DB2 catalog tablespaces.
This will allow the optimal performance
of these queries.

It will also be useful to have a report
of each PLAN_TABLE for each appli-
cation. This will allow for cross-checking
the DB2 catalog against application plan
and optimizer path selection information.
Run the query in Figure 1 for each
PLAN_TABLE in order to produce these
reports. Note: It is crucial for the TIME-
STAMP column to be in descending or-
der. This will cause the EXPLAIN data
in the report to be sorted in order from
the most recent to the oldest for each query
in the PLAN_TABLE.

This is important if the PLAN_TA-
BLE(s) being used are not purged. The
DB2 Application Programming Guide
contains information about EXPLAIN and
the PLAN_TABLE.

The queries and forms presented in this
article were developed using QMF and
are run weekly using a batch QMF job.
This is easier than submitting the queries
from QMF weekly or through SPUFI.
Simply build batch QMF JCL, incorpo-
rate all these queries and forms into a proc
and run the proc.

If these basic assumptions and condi-
tions are not met, it is still possible to
implement the queries. To accomplish

this, changes may need to be made to the
SQL or to the process by which they are
submitted. In addition, if STOSPACE,
RUNSTATS and EXPLAIN data is not
current, the queries may not provide ac-
curate information. With these basic ca-
veats in mind, a description of each cat-
alog query follows.

The Object Listing Queries

* Table Listing — Lists table columns
« Index Listing — Lists index columns

In order to perform database and sys-
tem administration functions for DB2,
often it is necessary to identify quickly
object dependencies. For example, a DBA
is confronted with the need to analyze a
poorly-performing query. He has the query
and a report of the EXPLAIN for the
query. Missing is a listing of available in-
dexes and candidate columns for creating
indexes. The object listing queries (see
Figures 2 and 3) provide this and more.

By viewing the output from these two
queries a hierarchy of DB2 objects can be
easily ascertained (indexes within tables
within tablespaces within databases). The
output from these queries is superb for
navigational purposes. It is easy to get
lost in a flood of production objects. By
periodically running these queries and
saving the output, a DBA can have an up-
to-date profile of the environment estab-
lished in each DB2 subsystem that he must
monitor.

The WHERE T.DBNAME IN clause in
each of these queries is optional. This
clause is used to produce reports only for
those databases which need to be moni-
tored. It is usually desirable to eliminate
the sample database, the DB2 catalog da-

MAINFRAME JOURNAL « MAY 1980

e e maee m——

e S e e s v

L MR e

ey e g AdAng, A e e i, = g« s,

oy ar e o, S o

o

DB2 Catalog

: (that is, DBEDIT, QMF and so on). This

PLAN TABLE Query elimination is optional as a DBA may wish
Query to monitor everything known to DB2,
SELECT QUERYNO, QBLOCKNO, APPLNAME. PROGNAME, PLANNO, Although the primary purpose of these
xﬂggcobfgs:ggg.s&mg m:;?d:&cesswps. two queries is navigational, they can also
SORTN_UNIQ, SORTN_JOIN, SORTN_ORDERBY, SORTN_GROUPBY, aid in problem determination and per-
SORTC_UNIQ, SORTC_JOIN. SORTC_ORDERBY, SORTC_GROUPBY, ance tuning oX i 8 > the
TSLOCKMODE, TIMESTAMP, PREFETCH, COLUMN_FN_EVAL, MIXOPSEQ fmm‘“.m fumngStogexamplc, ‘nofe the
FROM ownerid.PLAN TABLE following query:
ORDER BY
APPLNAME, SELECT A.COL1, A.COL2, B.COL3
PROGNAME, FROM TABLE1 A, TABLE2 B
Eggﬁs::gp DESC, WHERE A.COL1 = B.COL4;
PLANNO If this query is not performing properly.,
Form the DBA needs to know the column types
and lengths for COLI in TABLEI and
FORM.COLUMNS userid. PLANTBF COL4 in TABLE2. The type and [Cl’lg[h
Total Width Of Report Columns: 148 for both columns should be the same. If
NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ they are not then DB2 is performing a
1 oN] s i 7 datg conversion to 111.ake the comparison.
: gggmme] % £ 2 This will negatively impact performance.
4 PROGNAME BREAK1 1 8 c 4 Should the data type and length be con-
N ! 2 ; g sistent then find what indexes are defined
7 CREATOR 1 8 c 7 if any) on these columns and analyze the
8 TNAME 1 8 c 8 Y
3™ 1 2 L 5 EXPLAIN output. Other data such as the
L :"::OL | - E 0 key ranges and cardinality may also be
12 XNAME 1 8 c 12 significant, whether an index is clustered
AR ONEY : A ¢ e or not (these items will influence the
15 S_J 1 1 c 15 optimizer’s choice of access path) and
16 . =
L 2:3 ; : - 17 the number of tables in a tablespace (this
:g g_g :] g :g may cause performance degradation for
20 C6 1 1 C 20 non-segmented tablespaces). All of this
21 O 1 1 c 21 e e B Sy =
rar ; o 5 = information can be obtained from these
23 TIMESTAMP 1 16 c 23 reports.
1 2 C 24 . = -
2:, g':)L_EVAL 1 4 c 25 This ls_only one level of DB2 pcrlurm-
26 MULT_INDX L 4 : = ance tuning. The next level will delve

FIGURE 2 RS I N B TR

Table Listing Query Index Listing Query
Query
Query SELECT T.DBNAME, T.TSNAME, T.CREATOR, TNAME, LNAME.
LUNIQUERULE, .CLUSTERING, L.CLUSTERED,
SELECT Emmn'ng gggmséi‘éﬁgﬁ’% ;é‘::‘;bcn‘fﬁtg? LFIRSTKEYCARD, LFULLKEYCARD, L.NLEAF, |.NLEVELS,
C.DEFAULT, C.COLCARD, C.HIGHZKEY, C.LOW2KEY, C.UPDATES, LISOBID, K.COLSEQ, K.COLNAME, K.ORDERING
C.FLDPROC FROM SYSIBM.SYSKEYS :.
FROM SYSIBM.SYSCOLUMNS C, sv:uaugvgmgéfﬁss T
o CRELTOR S DHoRE WHERE ﬁ‘;slg:éa‘!ron T.CHEATOR AND |, TENAME = T.NAME)
:‘.?S nE ?ﬁ’.ﬁi‘l"%‘ e AND (K.IXCREATOR = LCREATOR AND K.IXNAME = |.NAME)
AND T.DBNAME IN ('dbnamet’, ‘dbname?, ‘dbnamex’) AND (T.DBNAMEIN i ,)
ORDER BY ORDERBY
T.DBNAME, 'I:TSNAME .
T.ISNAME, R
T.NAME ;
C.COLNO LNAME,
F : K.COLSEQ
orm
d.LISTTBLF S
userid. s
et FORM.COLUMNS userid.LISTINDF

Total Width Of Report Columns: 135
Total Width Of Report Columns: 136

USAGE INDENT WIDTH EDIT SEQ : :
T : = ; o 'NUM COLUMN HEADING - : USAGE INDENT WIDTH EDIT SEQ
1 _DATABASE BREAK1 1 8 c 1 et — —_—
2 TABLE SPACE BREAK2 1 8 c 2 1 DATABASE BREAK1 1 8 c 1
3 TABLE CREATOR BREAK3 1 8 c 3 2 TABLE_SPACE BREAK2 1 8 c 2
4 _TABLE BREAK3 1 18 c 4 3 TABLE_CREATOR BREAK3 1 8 (s 3
5 COL_NO 1 3 = 5 4 _TABLE BREAK4 1 18 c 4
6 COLUMN_NAME 1 18 c 6 5 INDEX BREAKS 1 18 c 5
7 COLUMN_TYPE 1 8 c 7 ¢ U.Q 1 1 c 6
B COLUMN_LENGTH 1 [L 8 T 1 1 c 7
9 SCALE 1 6 I 9 B CED : 1 1 [8
10 NU_LL 1 2 c 10 9 15T KEY_CARDINAL 1 8 L g
11 DF_LT 1 2 c 1 10 FULL KEY CARDINAL 1 8 L 10
12 COL_CARD 1 8 L 12 11 NO OF_LEAFS 1 5 L 1
13 HIGH2_KEY 1 8 £ 13 12 NOOF_LEVELS 1 8 L 12
14 LOW2_KEY 1 8 c 14 13 ISOBID 1 6 c 13
15 _UPDT 1 a G 15 14 COL_SEQ 1 4 L 14
16 FLD_PROC 1 a c 16 15 COLUMN_NAME 1 18 c 15
= 6 OR 1 1 c 16

MAINFRAME JOURNAL - MAY 1990 13

