DATABASE MANAGEMENT
"

~ Effective DB2 Object
Monitoring Using The DB2

tion DB2-based systems, it is neces-

sary to monitor periodically the DB2
objects comprising those systems. Moni-
toring is an essential component of post-
implementation duties because the pro-
duction environment is dynamic. Fluctua-
tions in business activity, errors in logical
and/or physical design or lack of com-
munication can all cause a system to per-
form inadequately. An effective strategy
for monitoring DB2 objects in the pro-
duction environment will catch and fore-
stall potential problems before they ad-
versely impact performance. The job of
monitoring DB2 objects usually is per-
formed by a database administrator, per-
formance analyst or system administrator.

An effective monitoring strategy will
include scheduled performance monitor
jobs, regular monitor runs from all on-
line environments where DB2 transac-
tions execute (that is, CICS, IMS/DC,
TSO) and regularly-scheduled reports
from the DB2 catalog. This article will
detail a strategy for accomplishing the lat-
ter objective.

By querying the DB2 catalog on a con-
sistent basis, many possible hazards can
be analyzed and acted on in a proactive
mode. This article describes QMF queries
which access the DB2 catalog. An anal-
ysis accompanies each query highlighting
some of the potential problems that can
be trapped by reviewing the output from
each query.

To implement this strategy, certain basic
assumptions have been made. It is as-
sumed that all application plans are bound
with the EXPLAIN(YES) option and that
each application has its own PLAN_TA-

In order to maintain efficient produc-

12

Catalog

By Craig S. Mullins

BLE for the storage of the EXPLAIN re-
sults. It is also assumed that scheduled
production STOSPACE and RUNSTATS
jobs are executed and that plans are re-
bound whenever RUNSTATS has been
executed. This is necessary to maintain
current statistical information about all
DB2 objects for an application. It is also
assumed that RUNSTATS has been per-
formed on the DB2 catalog tablespaces.
This will allow the optimal performance
of these queries.

It will also be useful to have a report
of each PLAN_TABLE for each appli-
cation. This will allow for cross-checking
the DB2 catalog against application plan
and optimizer path selection information.
Run the query in Figure 1 for each
PLAN_TABLE in order to produce these
reports. Note: It is crucial for the TIME-
STAMP column to be in descending or-
der. This will cause the EXPLAIN data
in the report to be sorted in order from
the most recent to the oldest for each query
in the PLAN_TABLE.

This is important if the PLAN_TA-
BLE(s) being used are not purged. The
DB2 Application Programming Guide
contains information about EXPLAIN and
the PLAN_TABLE.

The queries and forms presented in this
article were developed using QMF and
are run weekly using a batch QMF job.
This is easier than submitting the queries
from QMF weekly or through SPUFI.
Simply build batch QMF JCL, incorpo-
rate all these queries and forms into a proc
and run the proc.

If these basic assumptions and condi-
tions are not met, it is still possible to
implement the queries. To accomplish

this, changes may need to be made to the
SQL or to the process by which they are
submitted. In addition, if STOSPACE,
RUNSTATS and EXPLAIN data is not
current, the queries may not provide ac-
curate information. With these basic ca-
veats in mind, a description of each cat-
alog query follows.

The Object Listing Queries

* Table Listing — Lists table columns
« Index Listing — Lists index columns

In order to perform database and sys-
tem administration functions for DB2,
often it is necessary to identify quickly
object dependencies. For example, a DBA
is confronted with the need to analyze a
poorly-performing query. He has the query
and a report of the EXPLAIN for the
query. Missing is a listing of available in-
dexes and candidate columns for creating
indexes. The object listing queries (see
Figures 2 and 3) provide this and more.

By viewing the output from these two
queries a hierarchy of DB2 objects can be
easily ascertained (indexes within tables
within tablespaces within databases). The
output from these queries is superb for
navigational purposes. It is easy to get
lost in a flood of production objects. By
periodically running these queries and
saving the output, a DBA can have an up-
to-date profile of the environment estab-
lished in each DB2 subsystem that he must
monitor.

The WHERE T.DBNAME IN clause in
each of these queries is optional. This
clause is used to produce reports only for
those databases which need to be moni-
tored. It is usually desirable to eliminate
the sample database, the DB2 catalog da-

MAINFRAME JOURNAL « MAY 1980

e e maee m——

e S e e s v

L MR e

ey e g AdAng, A e e i, = g« s,

oy ar e o, S o

o

DB2 Catalog

: (that is, DBEDIT, QMF and so on). This

PLAN TABLE Query elimination is optional as a DBA may wish
Query to monitor everything known to DB2,
SELECT QUERYNO, QBLOCKNO, APPLNAME. PROGNAME, PLANNO, Although the primary purpose of these
xﬂggcobfgs:ggg.s&mg m:;?d:&cesswps. two queries is navigational, they can also
SORTN_UNIQ, SORTN_JOIN, SORTN_ORDERBY, SORTN_GROUPBY, aid in problem determination and per-
SORTC_UNIQ, SORTC_JOIN. SORTC_ORDERBY, SORTC_GROUPBY, ance tuning oX i 8 > the
TSLOCKMODE, TIMESTAMP, PREFETCH, COLUMN_FN_EVAL, MIXOPSEQ fmm‘“.m fumngStogexamplc, ‘nofe the
FROM ownerid.PLAN TABLE following query:
ORDER BY
APPLNAME, SELECT A.COL1, A.COL2, B.COL3
PROGNAME, FROM TABLE1 A, TABLE2 B
Eggﬁs::gp DESC, WHERE A.COL1 = B.COL4;
PLANNO If this query is not performing properly.,
Form the DBA needs to know the column types
and lengths for COLI in TABLEI and
FORM.COLUMNS userid. PLANTBF COL4 in TABLE2. The type and [Cl’lg[h
Total Width Of Report Columns: 148 for both columns should be the same. If
NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ they are not then DB2 is performing a
1 oN] s i 7 datg conversion to 111.ake the comparison.
: gggmme] % £ 2 This will negatively impact performance.
4 PROGNAME BREAK1 1 8 c 4 Should the data type and length be con-
N ! 2 ; g sistent then find what indexes are defined
7 CREATOR 1 8 c 7 if any) on these columns and analyze the
8 TNAME 1 8 c 8 Y
3™ 1 2 L 5 EXPLAIN output. Other data such as the
L :"::OL | - E 0 key ranges and cardinality may also be
12 XNAME 1 8 c 12 significant, whether an index is clustered
AR ONEY : A ¢ e or not (these items will influence the
15 S_J 1 1 c 15 optimizer’s choice of access path) and
16 . =
L 2:3 ; : - 17 the number of tables in a tablespace (this
:g g_g :] g :g may cause performance degradation for
20 C6 1 1 C 20 non-segmented tablespaces). All of this
21 O 1 1 c 21 e e B Sy =
rar ; o 5 = information can be obtained from these
23 TIMESTAMP 1 16 c 23 reports.
1 2 C 24 . = -
2:, g':)L_EVAL 1 4 c 25 This ls_only one level of DB2 pcrlurm-
26 MULT_INDX L 4 : = ance tuning. The next level will delve

FIGURE 2 RS I N B TR

Table Listing Query Index Listing Query
Query
Query SELECT T.DBNAME, T.TSNAME, T.CREATOR, TNAME, LNAME.
LUNIQUERULE, .CLUSTERING, L.CLUSTERED,
SELECT Emmn'ng gggmséi‘éﬁgﬁ’% ;é‘::‘;bcn‘fﬁtg? LFIRSTKEYCARD, LFULLKEYCARD, L.NLEAF, |.NLEVELS,
C.DEFAULT, C.COLCARD, C.HIGHZKEY, C.LOW2KEY, C.UPDATES, LISOBID, K.COLSEQ, K.COLNAME, K.ORDERING
C.FLDPROC FROM SYSIBM.SYSKEYS :.
FROM SYSIBM.SYSCOLUMNS C, sv:uaugvgmgéfﬁss T
o CRELTOR S DHoRE WHERE ﬁ‘;slg:éa‘!ron T.CHEATOR AND |, TENAME = T.NAME)
:‘.?S nE ?ﬁ’.ﬁi‘l"%‘ e AND (K.IXCREATOR = LCREATOR AND K.IXNAME = |.NAME)
AND T.DBNAME IN ('dbnamet’, ‘dbname?, ‘dbnamex’) AND (T.DBNAMEIN i ,)
ORDER BY ORDERBY
T.DBNAME, 'I:TSNAME .
T.ISNAME, R
T.NAME ;
C.COLNO LNAME,
F : K.COLSEQ
orm
d.LISTTBLF S
userid. s
et FORM.COLUMNS userid.LISTINDF

Total Width Of Report Columns: 135
Total Width Of Report Columns: 136

USAGE INDENT WIDTH EDIT SEQ : :
T : = ; o 'NUM COLUMN HEADING - : USAGE INDENT WIDTH EDIT SEQ
1 _DATABASE BREAK1 1 8 c 1 et — —_—
2 TABLE SPACE BREAK2 1 8 c 2 1 DATABASE BREAK1 1 8 c 1
3 TABLE CREATOR BREAK3 1 8 c 3 2 TABLE_SPACE BREAK2 1 8 c 2
4 _TABLE BREAK3 1 18 c 4 3 TABLE_CREATOR BREAK3 1 8 (s 3
5 COL_NO 1 3 = 5 4 _TABLE BREAK4 1 18 c 4
6 COLUMN_NAME 1 18 c 6 5 INDEX BREAKS 1 18 c 5
7 COLUMN_TYPE 1 8 c 7 ¢ U.Q 1 1 c 6
B COLUMN_LENGTH 1 [L 8 T 1 1 c 7
9 SCALE 1 6 I 9 B CED : 1 1 [8
10 NU_LL 1 2 c 10 9 15T KEY_CARDINAL 1 8 L g
11 DF_LT 1 2 c 1 10 FULL KEY CARDINAL 1 8 L 10
12 COL_CARD 1 8 L 12 11 NO OF_LEAFS 1 5 L 1
13 HIGH2_KEY 1 8 £ 13 12 NOOF_LEVELS 1 8 L 12
14 LOW2_KEY 1 8 c 14 13 ISOBID 1 6 c 13
15 _UPDT 1 a G 15 14 COL_SEQ 1 4 L 14
16 FLD_PROC 1 a c 16 15 COLUMN_NAME 1 18 c 15
= 6 OR 1 1 c 16

MAINFRAME JOURNAL - MAY 1990 13

DB2 Catalog

deeper into the physical characteristics of
DB2 objects.

The Physical Statistics Queries
» Tablespace Physical Statistics
» Index Space Physical Statistics

Quite often it will be necessary to trace
a performance problem within a DB2
query to the physical level. Characteris-
tics at the physical level are determined
when DB2 objects are defined. The focus
will be on tablespaces and index spaces
as these two objects require that a phys-
ical data set be created to support them.
Many different options need to be chosen
when a DB2 is created. If poor choices
are made, performance will be unsatis-
factorily impacted. The physical statistics
queries can be used to monitor and tune
these options.

The Tablespace Physical Statistics
Query (see Figure 4) provides a listing of
tablespaces within the database and lists
all the pertinent physical detail associated
with each tablespace. The Index Physical
Statistics Query (see Figure 5) provides a
report of all indexes grouped by owner
with the physical criteria supporting each
index. These reports are invaluable tools
for diagnosing performance problems
when they happen and frequently for
catching problems before they occur.

Both reports in this section show the
CLOSE RULE associated with the ta-

blespace or index space. Always monitor
this rule for both. A CLOSE RULE of Y
indicates that every time an object is ac-
cessed, a VSAM open and close will be
performed by the system. The perform-
ance of any query which accesses an ob-
ject defined this way will be impeded. A
CLOSE RULE of N will only perform the
VSAM open the first time the object is
accessed. It will then remain open until
DB2 is shut down. This will increase the
performance of the query. It does, how-
ever, add the overhead associated with
keeping a data set open. This overhead
should be minimal and is usually pre-
ferred to having a slow-running query.

Each tablespace and index must be re-
viewed based on its desired usage to de-
termine the CLOSE RULE for it. Certain
objects which are accessed infrequently
or only once per day will not need to re-
main open. As a basic rule, define ta-
blespaces as CLOSE NO unless a good
reason is provided otherwise. Whenever
a query is found to be causing perform-
ance problems, always examine the
CLOSE RULE for each tablespace and
index involved in the query.

These reports are also useful in deter-
mining frequency of reorganization. By
monitoring PCT Dropped, Far Off and
Near Off Rows (in both the tablespace
and index spaces), Leaf Distance and
Cluster Ratio it can be determined whether

to increase or decrease the frequency of
running a reorganization. See Table 1 for
an analysis of the impact of this infor-
mation on reorganization frequency.

It is also useful to analyze the table-
space and index space usage. The ability
to monitor SPACE USED% for a table-
space is of particular importance. Effi-
cient DASD space usage is important to
maintain an optimal operating environ-
ment for DB2 objects. When the SPACE
USED% consistently remains below 75
percent for an extended period of time,
the PRIQTY space for the tablespace
should be decreased and the tablespace
should be reorganized. If this percentage

Reorganization Indicators

Column Object Impact

PCT Dropped TS +++4++

Near Off Rows TS +

Far Off Rows TS ++++

Cluster Ratio Index:—— | T===—=

Near Off Rows Index +

Far Off Rows Index 250

Leaf Distance Index + 4+
How To Read The Above Chart

A’+' indicates REORG more frequently when
this number is large

A'~"indicates REORG more frequently when
this number is small

The greater the number of occurrences the

more urgent the need to REORG

Query

SELECT T.DBNAME, T.NAME, TIMPLICIT, TLOCKRULE,

P.NEARINDREF, P.PERCACTIVE, PPERCDROP,

T.NACTIVE*100*T.PGSIZE/T.SPACE
SYSIBM.SYSTABLESPACE T,
SYSIBM.SYSTABLEPART P
WHERE T.NAME = P.TSNAME
AND T.DBNAME = P.DBNAME
ORDER BY

T.DBNAME,

T.NAME

FROM

Form
FORM.COLUMNS
Total Width Of Report Columns: 150

Tablespace Physical Statistics Query

T.ERASERULE, T.CLOSERULE, T.PARTITIONS, T.SEGSIZE,
T.NTABLES, T.NACTIVE, P.CARD, P.FARINDREF,

P.FREEPAGE, P.PCTFREE, PSTORNAME, PVCATNAME,

userid.PHYTABLF

Query

FROM
WHERE
AND
ORDER BY

LLNAME

Form

FORM.COLUMNS

Index Physical Statistics Query

SELECT |LCREATOR, .CREATEDBY, LNAME, |.UNIQUERULE,
I.CLUSTERING, I.CLUSTERED, .CLUSTERRATIO,
I.FIRSTKEYCARD, LFULLKEYCARD, I.NLEAF, LNLEVELS,
4096/1.PGSIZE, .LERASERULE, I.CLOSERULE, P.CARD,
P.FAROFFPOS, PLEAFDIST, PNEAROFFPOS, P.FREEPAGE,
P.PCTFREE

SYSIBM.SYSINDEXES I,

SYSIBM.SYSINDEXPART P

ILNAME = PIXNAME

LCREATOR = PIXCREATOR

I.CREATOR,

Total Width Of Report Columns: 143

userid.PHYINDXF

NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ
= e e N DIT
1 DATABASE EREARTE T = = 3 w COLUMN HEADING USAGE INDENT m E_ ﬂ
2 TABLE_SPACE BREAK2 1 8 (& 2 T INDEX_OWNER BREAK1 1 8 (s 1
3 IMPL ‘] 4 c 3 2 _INDEX 1 18 c 2
4 LOCK_RULE 1 4 c 4 = e T + 1 1 c 3
5 E_R 1 1 (53 5 4 C.L 1 1 (¢ 4
L] C_R 1 1 c 6 5 cD 1 1 c 5
7 PARTS 1 5 L 7 6 CLSTR_RATIO 1 5 L 6
8 SEG_SIZE 1 4 L 8 7 FIRST KEY_CARDINALITY 1 1 L 7
9 NO OF_TABLES 1 6 2 9 8 FULL KEY_CARDINALITY 1 1 L 8
10 NO OF_PAGES 1 8 L 10 9 NO OF_LEAFS 1 6 L 9
1 NO OF_ROWS 1 mn L 1 10 NO OF_LEVELS 1 6 L 10
12 FAR OFF_ROWS 1 11 5 12 11 SUB_PAGES 1 5 L 1
13 NEAR OFF_ROWS 1 11 L 13 i 2 e 1 1 c 12
14 PCT _ACTIVE 1 7 L 14 13 C_R 1 1 C 13
15 PCT _DROPPED 1 7 £ 15 14 NO OF ROWS_REF (CARD) 1 11 L 14
16 FREE_PAGE 1 4 L 16 15 ROWS AT_FAROFF POS 1 11 L 15
17 PCT_FREE 1 a . 17 16 LEAF_DISTANCE 1 8 L 16
18 STOGROUP 1 B c 18 17 ROWS AT_NEAROFF POS 1 1 L 17
19 VCAT_NAME 1 5 (o 19 18 FREE_PAGE 1 a L 18
20 SPACE_USED% 1 5 = 20 19 PCT_FREE 1 4 L 19

16

MAINFRAME JOURNAL « MAY 1990

DB2 Catalog

F1EURE b L TR el E e

Tablespace Scan
p Query Index Space Scan Query
Query
Query SELECT E.APPLNAME, E.PROGNAME, E.QUERYNO, | NAME, L.NLEAF,
—seLscr = récsfég?gn;ré;_qrncncms. E.INDEXONLY, E.TIMESTAMP,
APPLNAME, E.PROGNAME, E.QUERYNO, E.TNAME. T.NPA : SLAN TA
E TIMESTAMP, S.SEQNO, S.TEXT e EROMI Fowmerd FLANSIABLEZES
FROM ownerid PLAN TABLE E, Y SNV SINDERED RN
SYSIBM.SYSTABLES T, EXSEA RS
e STSIBMSYSSTMT S T SR
CCESSTYPE = 'R' i '
AND gmgss 50 O TNPAGES < 0) D A D ACCESSNAME
B = Al o =
::g ;’.th:.nsawn — E.CREATOR ::g ;cr?::;o—“s: pﬁggﬁiisécnama
AND sipmfu_e EPE‘?SS:I&"E 2 AND S.PLNAME = E.APPLNAME
3'.13“ vs.sm-mo = E.QUERYNO S:gsn evs‘ e
B
E.APPLNAME, EAPPLNAME.
; : E.PROGNAME,
E’?&%%?::S'ossc E.TIMESTAMP DESC,
; : E.QUERYNO,
E.QUERYNO, ;
S.SEQNO FSCONO
Form ——F A2
FORM.COLUMNS userid. SCANTSF EOBMCOImES userid. SCANIXF
Total Width Of Report Columns: 329 T
NUM COLUMN HEADING USAGE INDENT WIDTH EDIT SEQ NPt L N HEsDNS A
— o == 1 PLAN_NAME K1
1 PLAN_NAME BREAK1 1 8 c 1 2 DBRM_NAME 235?.« } : g ;
2 DBRM_NAME BREAK2 1 8 c 2 3 QRY_NO BREAK3 1 7 L 3
3 QRY_NO BREAK3 1 7 L 3 4 INDEX BREAK3 1 18 c 3
; L%BCL”E_::&% BREAK3 1 18 c 4 5 NO OF_LEAF PAGES BREAK3 1 8 L 5
: 0 OF _PAGE: BREAK3 1 7 L 5 6 COLUMNS_IN KEY BREAK3 1 6 L 6
7 SEQ NO BREAKS.°1 16 c 6 7 MATCHING_COLUMNS BREAK3 1 8 L 7
e eneee 1 3 L 7 8 INDX_ONLY BREAK3 1 4 c B
| ! 1 254 c 8 9 _TIME STAMP BREAK3 1 16 c 9
10 SEQ_NO 1 3 L 10
| 11 SQL_CODE 1 FLILEEAT 11

is 100 percent and growth is expected, the
PRIQTY space should be increased.

Other space considerations can be ana-
lyzed via monitoring PCT ACTIVE,
FREE PAGE and PCT FREE. In con-
junction with a data set allocation report,
space can be reviewed and modified as
necessary. As a general rule when PCT
ACTIVE is low it may be necessary to
redefine with a smaller PRIQTY (and/or
SECQTY). Free space can also be changed
as well. In any event it will be necessary
to monitor these reports with the actual
data set statistics. Also, remember that in
order for changes-to-space characteristics
to take affect, the tablespace being altered
must be reorganized.

After this level of performance analysis
has been exhausted it becomes necessary
to broaden the scope of the tuning effort.
This will involve analysis of application
programs (plans) and may necessitate
building new indexes or changing SQL in
application queries.

The Scan Queries

- Tablespace Scans Greater Than 50 Pages

« Index Space Scans Greater Than 100 Pages
The scan queries (see Figures 6 and 7)

produce reports that can detect many po-

tential performance problems. By com-

bining the DB2 catalog information with

the output from EXPLAIN, a series of

potential **problem queries™ can be iden-

tified. These *‘problem queries’” will be

18

grouped into two categories; tablespace
scans and index space scans. In each in-
stance, DB2 will scan data sets to satisfy
the query. A tablespace scan will not use
an index and will read every page in the
tablespace. An index space scan will not
necessarily read every index subpage but
has that potential.

These queries will probably be long-
running. Do not execute them in parallel
with heavy production DB2 processing or
during the on-line DB2 transaction win-
dow. For the scan queries to operate ef-
ficiently, ensure that the PLAN_TABLE
being used in each query does not contain
excessive extraneous data. Strive to main-
tain only the most recent EXPLAIN data
from production BIND jobs in the table.
Also, only keep EXPLAIN information
for plans which need to be monitored. Ex-
ecuting RUNSTATS on the PLAN_TA-
BLES can also positively affect the per-
formance of these queries.

The tablespace scan report will list
queries scanning more than 50 pages and
queries accessing tables without current
RUNSTATS information. If the NO OF
PAGES is — 1 for any table then RUN-
STATS has not been run. A RUNSTATS
job should be executed as soon as possi-
ble followed by a rebind of any plan which
uses this table. Everything else on this
report should be monitored closely. For
tables over the 50-page threshold. the per-
formance impact is uncertain. The greater

the number of pages scanned, the greater
the potential for performance problems.

The 50-page cutoff for inclusion on this
report is somewhat arbitrary and may need
to be redefined as the information re-
turned is gauged. To monitor large tables
only, the number may be increased. If a
bufferpool is small (under 1000 buffers).
the number may be reduced. Some poten-
tial numbers and their significance follow:

100 Increase this number to 100 (or
larger) to monitor only those quer-
ies accessing large tables. This
number will vary according to the’
definition of ‘‘large table.”

20 For tables with 20 or more pages it
is recommended that indexes be
created in order to satisfy the pred-
icates in the query. It is not always
possible to create an index for every
predicate however, so this is only a
guideline. Various DB2 references
recommend indexes be considered
when the number of pages in a ta-
blespace reaches five, six and/or 15.
In practice though, 20 pages seems
to be a good number.

The index space scan report will list all
queries scanning more than 100 leaf pages
where a match on the columns in the query
is not a complete match on all index col-
umns. As the number of MATCHING
COLUMNS increases the possibility of
performance problems decrease. The

See DB2 Catalog page 106

MAINFRAME JOURNAL + MAY 188

Compile/QMF

simple COBOL programs for the product
to pay for itself,” he adds.

For NIPSCO the initial goal in testing
Compile/QMF was to use it as a tool for
migrating QMF queries to production and
to save CPU resources. “But,” notes
Adams, “after finding out how easy it is to
use, we are going to give it to our develop-
ers for prototyping applications.”

For the technical staff, the benefit is in-
creased programmer productivity. For the
end user, the benefit is increased respon-
siveness. “We can be more responsive to
user requests,” says Adams, “and we can
free up our programmers to do more com-
plex tasks.”

Compile/QMF provides an easy way
around one of the big drawbacks to QMF:
its limitations for certain types of reports,
including any reports with IF THEN logic.
True, Compile/QMF will only compile the
existing logic into the COBOL program.
But once the COBOL code is generated, it
is relatively simple to modify, adding the
required additional logic. (Compile/QMF
generates programs that are structured and
well-commented with meaningful para-
graph names.)

Reports with IF logic were the driving
force for trying Compile/QMF for John
Mackintosh, manager of applications de-
velopment for Black Box Corporation
(Pittsburgh, PA). Black Box, a manufac-
turer and distributor of data communica-
tions equipment, recently upgraded its
order entry system. One result was a back-
log of reports that had to be converted to
the new system. While many of the reports
have been generated in QMF, many more
are too cumbersome, needing multiple se-
lects, builds and joins in QMF to replace a
single IF statement.

Compile/QMF should provide Black
Box with a cost-effective solution. “We
can still do the QMF query, use Com-
pile/QMF to generate the COBOL code
and add the IF statement,” says Mackin-
tosh. That was the initial reason for install-
ing Compile/QMF. Now that it is in-house,
Mackintosh sees potential incremental
value for it in conjunction with an auto-
mated scheduling tool they are also install-
ing. “The automated scheduler needs
return codes from SQL errors. By convert-
ing our QMF queries to COBOL we could
generate the true error codes we need.”

Like QMF, however, Compile/QMF
does not do it all. Compile/QMF currently
cannot handle save data. Another problem
for some users is the reliance on external
routines for certain formatting functions.

106

This is because Compile/QMF was de-
signed to accommodate those features of
QMF that cannot be handled with COBOL,
specifically word wrapping. By using exter-
nal routines, the end user does not lose those
features when the reports are converted to
COBOL. (SableSoft reports that the next
release, currently being field tested, does
handle save data and offers the option of
eliminating the external routines.)

Technical Support

Technical support, especially for new
products, is always a paramount concern.
SableSoft offers 24-hour technical support
for Compile/QMF. Both Donahue and
Adams asked for technical support and got
what they needed expeditiously. Donahue
reported that he found four minor problems
ininitial testing and they were all corrected
in about a day. (The problems he found
involved rounding, numbers of places to
the right of the comma, a heading value not
appearing on the first page of the report and
failure to block the work file.)

Adams, too, was pleased with the re-
sponsiveness when he asked for help, espe-
cially considering that he was asking for
help doing something the product was not
designed to do. He explains, “The product
is designed to be run from a TSO terminal,
using TSO Attach. I wanted to run in the
production control environment using Call
Attach so I called SableSoft and they gave
me the JCL for relinking the modules.”

Regarding evaluation criteria for the
three users surveyed, all of them claimed
productivity and performance benefits are
more important than cost, customer support
or the company’s background. Donahue
said the cost was attractive and he expects
the payback period to be short; however, he
was more concermned about getting COBOL
code that is maintainable. For Adams, the
issue was performance and for Mackintosh,
the key issue was ease of use. At $13,000 to
$16,900 for the first license, it should not
take long to cost-justify Compile/QMF.

Compile/QMF operates with any IBM 370
or plug-compatible system. It requires MVS
or VM, DB2 or SQL/DS, and a COBOL
compiler. For more information, contact
SableSoft, Inc., 2695 Winding Trail Drive,
Boulder, CO 80304, (303)443-7791. &

ABOUT THE AUTHOR

Renee Peterson reports on main-
frame software developments and is
a frequent contributor to MAIN-
FRAME JOURNAL.

DB2 Catalog
DB2 Catalog from page 18

worst possible case is to have zero
MATCHING COLUMNS, but even this
may be acceptable for an index-only scan.

The usage of 100 pages as the cutoff
value for the index space scan report may
need to be modified. Some suggestions
would be to use the same number as cho-
sen for the tablespace scan report or to
choose a value that is appropriate for the
environment.

The pertinent point to be made is to
carefully analyze the results of these quer-
ies. The SQL for each query is listed in
the report. Every query listed on the re-
port is not necessarily a problem query.
Each query, however, should be closely
monitored. Corrective actions can be taken
for poorly performing queries identified
via these reports. Some of these actions
are listed below:

* Ensure that appropriate indexes are

available

* Change current indexes to include ad-

ditional columns used in a problem
query, which necessitates dropping
and re-creating the index — a poten-
tially long process for large tables

* Recode the queries for efficiency (that

is joins versus sub-selects, use stage
1 predicates, eliminate usage of OR
and so on.)

¢ Eliminate any unnecessary joins.
Summary

Many reports can be produced from the
DB2 catalog to aid in performance mon-
itoring. This article details some sample
reports in three basic areas: navigational,
physical and plan. Each'area provides a
proactive means of preventing perform-
ance bottlenecks before they occur. They
are only suggestions. Changing them to
suit specific needs should be easy due to
the ad hoc nature of SQL. Good luck
in tuning. &

ABOUT THE AUTHOR

Craig S. Mullins
is an officer of Mel-
lon Bank Corpora-
M tion in Pittsburgh,
MR PA. He is the DB2
system and data-
base administrator
with more than five
years of experience in database
management systems. He is also
a vice-president and co-founder
of ASSET, Inc., a Pittsburgh-
based consulting and software

development firm.

MAINFRAME JOURNAL « MAY 1990

A

e e T s et e ARt e e oty e————

e e e el

