Ll | o o e

BY CRAIG S. MULLINS

From index processing to access-path selection, IBM has retooled its

strategic DBMS

THE MOST TOUTED
aspect of the latest
version of DB2, officially released
by IBM last fall, has been its sup-
port of distributed database. But
that’s not the only difference; oth-
er important modifications include
changes to the way data is ac-
cessed, an increase in the informa-
tion provided by the EXPLAIN com-
mand, and an increase in the
statistics stored for query optimiz-
ation. These changes have the po-
tential to significantly enhance
query performance.

First, DB2 v. 2.2 lets you use
multiple indexes for an access
path. While the need for multiple
indexes to satisfy specific portions
of a query might seem obvious,
that feature wasn’t supported until
this release.

To analyze a query, the DB2
optimizer breaks it down into que-
ry subsets known as query blocks.
Each query block can access one
new table. Multiple indexes can
now be used, a feature unavailable
prior to v. 2.2. When using multi-
ple indexes to satisfy a query
block, DB2 takes one of two ap-
proaches: row-identifier intersec-
tion or RID union. (An RID identi-
fies a row within a page to DB2.)
When multiple indexes are used to
satisfy an AND condition in the
WHERE clause of a query, RID inter-
section is used. When multiple in-
dexes satisfy an OR condition in the
WHERE clause, RID union is used.

To clarify these concepts,
let’s consider an example: a table
(Relationl) with two indexes,
IDX1 on Columnl and Column2
and IDX2 on Columné and Col-
umn4. Note the queries in Listing
1. With v. 2.2, query 1 could have
used either IDX1 or IDX2, but not
both. With an earlier version, this
decision would have been based
on the statistics in the DB2 catalog
(such as the cluster ratio, cardinal-
ity, and so forth). Now DB2 can
use both indexes and RID intersec-

tion. It can also satisfy the Col-
umnl portion of the WHERE clause
using IDX1 and the Columné por-
tion using IDX2. The RIDs would
then be intersected and the data
retrieved.

Query 2, on the other hand,
would not have used any index
under v. 2.1 because of the OR in
the WHERE clause. Now both indexes
can be used; DB2 can satisfy the
Column1 portion of the clause us-
ing IDX1 and the Columné por-
tion using IDX2. The RIDs that
were retrieved would then be ap-
pended via UNION, and the data
would be retrieved.

Of course, the DB2 optimiz-
ation process still takes other in-
formation into account when de-
ciding on the best way to satisfy
the query. Also, DB2 doesn’t use
multiple indexes when certain
thresholds are reached. For RID
intersection, the threshold occurs
when fewer than 32 RIDs qualify
for the query block. For RID
union, the threshold occurs when
more than one quarter of the RIDs
in the table qualify for the query
block. This limit prohibits DB2
from using multiple indexes when
it’s unnecessary or when it could
adversely affect performance.

IBM has released figures
showing a decrease of 10:1 elapsed
time and 5:1 CPU time between
v. 2.1 and v. 2.2 when multiple in-
dexes were used. However, this
feature may also increase the cost
of your query. Multiple indexes
usually enhance performance, but

beware when
must test all of your critical pro-
duction queries with the new re-
lease of DB2 before moving to
production.

converting: You

DISTRIBUTION STATISTICS
Version 2.1 and all prior releases
work on the assumption that all
data in all tables is uniformly dis-
tributed. This implies that a table
with 100 rows and 10 unique val-
ues has 10 occurrences of each
unique value. Version 2.2 corrects
this problem.

The RUNSTATS utility has been
modified to gather statistics for the
first column of multicolumn in-
dexes and all nonunique, single-
column indexes. This data is stored
in the catalog for use during query
optimization. Distribution statis-
tics give the optimizer better in-
formation about the nature of the
data needed to satisfy the query,
resulting in better access-path
selection.

DB2 can’t always use distri-
bution statistics. Queries with the
IN and LIKE predicates won’t use
them; nor will queries with host
variables. DB2 still assumes uni-
form distribution in these cases.

The performance implica-
tions of this enhancement appear
to be as impressive as those for
multiple-index usage. IBM'’s fig-
ures indicate the possibility of a
7:1 decrease in elapsed time and a
2:1 decrease in CPU time. Once
again, these numbers are the re-
sults of lab benchmarks and may |

DATABASE PROGRAMMING & DESIGN
39

not accurately reflect the perfor-
mance gain (or loss) your shop
will experience.

LIST PREFETCH

Another new facility is list pre-
fetch. Similar to sequential pre-
fetch, it’s used to enable more effi-
cient processing of nonclustering
indexes. At this point, a short re-
fresher on clustering may be use-
ful. The term refers to the process
of physically ordering table data
by specified column values. Each
index has an associated cluster ra-
tio that indicates the extent to
which the table is in physical or-
der by that index’s keys. The high-
er the cluster ratio of data in DB2
tables, the better queries against
the tables will perform.

Until list prefetch was imple-
mented, additional I/O was likely
to be incurred when tables with
low cluster ratios were accessed.
The list prefetch facility reduces
the I/O for tables accessed via in-
dexes with a low cluster ratio. It
works by sorting the RIDs re-
trieved in sequence and invoking
a single I/O for multiple pages
containing those RIDs. With list
prefetch, up to 32 pages can be re-
trieved at a time, and multiple
I/Os for the same page are elimi-
nated. Previously, pages were re-
trieved one by one based on RIDs
in the index.

When invoking list prefetch,
you may notice a lower elapsed
time. It is important to realize,
though, that overhead is involved.
To sort RIDs, you must obtain sort
work space from the DB2 buffer
pool. An RID pool is formed from
this space. IBM has stated that rig-
orous checks are used to ensure ef-
fective use of the RID pool. Up to
50% of the buffer pool can be used
(to a maximum of 200 MB).

STAGE 1 PROCESSING
Evaluating a predicate in the Data
Manager portion of DB2 is more

PRI RS

Another useful
addition is the
ability to create
a table ALIAS

efficient than evaluating it in the
Relational Data Services portion.
The Data Manager acts upon data
sets, whereas the RDS acts upon
rows and columns. Any predicate
evaluated in the Data Manager is
said to be in stage 1; any predicate
evaluated in the RDS is said to be
in stage 2. DB2 2.2 evaluates IN, NOT
IN, = ANY, and /A = ALL at stage 1.
(IBM's DB2 System and Database
Administration Guide, SC26-4374-1,
lists the stage 1 predicates.) Pre-
viously, these predicates were
evaluated at stage 2.

In addition, column func-
tions (such as SUM) are also evaluat-
ed at stage 1 if the query uses only
stage 1 predicates, is requested for
a single column, and is not in-
volved in a sort for GROUP BY. For
joins, the function must be on the
innermost table.

Both of these enhancements
may improve the performance of
queries that meet those conditions.
IBM has released figures that indi-
cate a possible 4:1 decrease in both
elapsed time and CPU time when
DB2 uses these enhancements.

EXPLAIN ENHANCEMENTS
EXPLAIN is the DB2 utility that exam-
ines SQL and reports on the access
path chosen by the optimizer. The
columns in PLAN_TABLE are
listed in Table 1. Three new col-
umns have been added to EXPLAINs
PLAN_TABLE output, and new
values were added to an existing
column.

Two welcome additions to
PLAN_TABLE are the COLUMN
_FN_EVAL and PREFETCH col-
umns. The first reveals whether or

woyz

SELECT *

- FROM Relation1

WHERE Column1 = ‘VALUE1®
OR Columng = ‘VALUEG':

LISTING 1. Sample queries to clarify index use.

not the column function for this
query block will be evaluated dur-
ing stage 1 or stage 2 processing to
further aid query performance
analysis. The PREFETCH column
indicates whether sequential pre-
fetch, list prefetch, or no prefetch
was performed for this query
block. Before this enhancement to
EXPLAIN, only a performance moni-
tor report could indicate whether
or not sequential prefetch was
invoked.

EXPLAIN has also been changed
to show more than one index for
an access path. The ACCESSTYPE
column, in conjunction with the
new column MIXOPSEQ (multiple-
index operation sequence), pro-
vides information on each index
in an index path. The ACCESS-
TYPE column has been enhanced
to allow for codes indicating mul-
tiple indexes and the manner in
which those indexes are being
used (scan, RID intersection, or
RID union). The MIXOPSEQ col-
umn contains a sequence number
for the multiple-index indicators
(or zero for any other ACCESS-
TYPE). To use these new columns,
DBAs will have to change all
PLAN_TABLEs before implement-
ing v. 2.2,

MISCELLANEOUS CHANGES
Several other changes are worth
noting. First, the performance of
correlated subqueries has been
modified in certain instances. The
MAX and MIN column functions no
longer require an index scan (if an
index exists) but now perform
only one fetch. This one-fetch in-
dex scan is also shown in the
ACCESSTYPE column of PLAN_
TABLE. Range comparisons using
ANY and ALL can now use an
index. Finally, the new version
modifies merge-scan join perfor-
mance by avoiding a row sort for
the inner table in certain cases.
Another useful addition is
the ability to create a table ALIAS.
This feature reduces the name
length of tables participating in
distributed systems. (Data distribu-
tion adds a high-level qualifier
LOCATION to the table name.)
Regardless of its intended use, the
ALIAS can be used as a global SYN-
ONYM. Available in previous re-
leases of DB2, SYNONYMs are accessi-
ble only by their creators. An ALIAS

JUNE 1990
60

Column Name
QUERYNO
QBLOCKNO
APPLNAME
PROGNAME

Column Usage

Integer to identify EXPLAIN statements

Integer to identify subselects within an SQL statement
Plan name (spaces for dynamic EXPLAIN statements)
Program name that issued the EXPLAIN (spaces if not

called from a program)

PLANNO

Integer to identify steps within the plan; shows the

order in which DB2 processes each step

METHOD

0 ... First table accessed
1... Nested-loop join
2

.. Merge-scan join
3 ... Sort for ORDER BY, GROUP BY, or DISTINCT

CREATOR
TNAME
TABNO
ACCESSTYPE
I....Index

S

Table creator for this step’s new table

Name of this step’s new table

Integer to identify separate references to same table
Method of accessing the new table for this step:

. One-fetch index scan

R ... Sequential page scan
N . .. Index (for predicate using IN)
M. .. Multiple-index scan

+ 4+ +
=

MATCHCOLS
ACCESSCREATOR
ACCESSNAME

- INDEXONLY

MX. . Multiple-index scan on ACCESSNAME

. . Multiple-index intersection

MU . Multiple-index union

Number of index columns used in an index scan
Index creator for this step’s index _
Name of index used in this step (blank if none)
Y . .. Index alone used to satisfy request

N ... Data must also be accessed

SORTN_UNIQ
SORTN_JOIN
SORTN_ORDERBY
SORTN_GROUPBY
SORTC_UNIQ
SORTC_JOIN
SORTC_ORDERBY
SORTC_GROUPBY

Whether a sort is done on the new table for
uniqueness, join, ORDER BY, or GROUP BY (Y/N)

Whether a sort is done on the composite table for
uniqueness, join, ORDER BY, or GROUP BY (Y/N)

Lock mode for the table space that holds the new

table for this step (IS, IX, S, X)

Time the EXPLAIN statement was executed

* " . Data manipulation time (or unknown)

TSLOCKMODE

TIMESTAMP

REMARKS Comments

PREFETCH* S ... Sequential prefetch
L ... List prefetch
“"” . No prefetch

COLUMN_FN_

EVAL* R ... Data retrieval time

S ... Sort time

MIXOPSEQ*

Integer indicating sequence for multiple-index scans

e e e e e ety o2t el A et
TABLE 1. PLAN _TABLE columns. New columns are marked with an asterisk; new col-

umn values are marked with a plus.

can be accessed by anyone granted
the proper authority. ALIASes are
maintained using the CREATE and
DROP SQL verbs and are recorded in
the SYSIBM.SYSTABLES table in
the DB2 catalog. ALIASes could be
used as replacements for VIEWs on
base tables where all data and col-
umns are accessible.

Don't forget that IBM’s per-
formance claims are based on best-
case scenarios—simply moving
from one release to the next won't
necessarily improve performance.

Each enhancement addresses spe-
cific changes made for specific
types of queries. If the nature of
your queries is such that they can
benefit from these changes, you
may see a significant improvement
in performance.]

Craig S. Mullins is a database and sys-
tem administrator specializing in DB2 at
Mellon Bank in Pittsburgh, Pa. He is co-
founder and vice president of ASSET
Inc., a customized software and technical
consulting firm, and a DB2 instructor.

PUT YOUR
READER SERVICE
CARD TO WORK

FOR YOU!

DATABASE PROGRAMMING
& DESIGN knows you're
busy, and sometimes there
isn't enough time to call an
advertiser for information.
That's why we have
provided Reader Service
cards for you to obtain
information on the products
and services advertised in
this issue.

The Reader Service card
(located in the back of this
issue) is an efficient,
effective and cost free way
for you to get the information
you need. Simply circle the
corresponding numbers of
the products you are
interested in, fill out your
name and address, and drop
the postage-paid card in the
mail. We will take care of
the rest!

We'll make sure that your
request is passed on directly
to the advertiser, who will
send free details of their
products and services

back to you.

SEND IT TODAY!

DATABASE PROGRAMMING & DESIGN
61

